Q1. Amina is making designs with two different shapes.

She gives each shape a value.

Calculate the value of each shape.

Total value is 111

$=$

1 mark

Q2. \mathbf{k}, \mathbf{m} and \mathbf{n} each stand for a whole number.
They add together to make 1500

$$
\mathrm{k}+\mathrm{m}+\mathrm{n}=1500
$$

\mathbf{m} is three times as big as \mathbf{n}.
\mathbf{k} is twice as big as \mathbf{n}. Calculate the numbers \mathbf{k}, \mathbf{m} and \mathbf{n}.

Q3. Here are three equations.

$$
\begin{aligned}
a+b+c & =30 \\
a+b & =24 \\
b+c & =14
\end{aligned}
$$

What are the values of a, b and c ?
$a=$

Q4. The rule for this sequence of numbers is 'add 3 each time'.

$\begin{array}{llllll}1 & 4 & 7 & 10 & 13 & 16\end{array}$

The sequence continues in the same way.
Mary says,
'No matter how far you go there will never be a multiple of 3 in the sequence'.
Is she correct?
Circle Yes or No.
Yes I No
Explain how you know.

Q5. n stands for a whole number.
$\mathbf{2 n}$ is greater than 30
$\mathbf{5 n}$ is less than 100

Write all the numbers that \boldsymbol{n} stands for.

Q6. Write the missing numbers so that $2 a+5 b=30$
One is done for you.
$2 a+5 b=30 \quad$ when $\quad a=0 \quad$ and $\quad b=\underline{6}$
$2 a+5 b=30$ when $\quad a=5 \quad$ and $\quad b=$ \qquad
$2 a+5 b=30 \quad$ when $a=15$ and $\quad b=$ \qquad

Q7. Here is a sequence of patterns made from squares and circles.

	number of squares	number of circles
$\frac{\square}{\circ}$	1	3
	2	5
	3	7

The sequence continues in the same way.
Calculate how many squares there will be in the pattern which has $\mathbf{2 5}$ circles.

Q8.
Ann makes a pattern of \mathbf{L} shapes with sticks.

Ann says:
"I find the number of sticks for a shape by first multiplying the shape-number by 4 , then adding $3^{\prime \prime}$.

Work out the number of sticks for the shape that has shape-number 10

Ann uses 59 sticks to make another \mathbf{L} shape in this pattern. What is its shape-number?

Here is Ann's rule again:
"I find the number of sticks for a shape by first multiplying the shape-number by 4 , then adding 3 ".

Write a formula to work out the number of sticks for any \mathbf{L} shape.
Use \mathbf{S} for the number of sticks and \mathbf{N} for the shape-number.

$$
\mathrm{S}=
$$

